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Bistable chemical fronts can be deformed by Marangoni-driven convective flows induced by gradients of
surface tension across the front. We investigate here the nonlinear dynamics of such a system by simulations
of two-dimensional Navier-Stokes equations coupled to a reaction-diffusion-convection equation for a surface-
active chemical species present in the bulk of the solution and involved in a bistable kinetics. We show that
Marangoni flows cannot only alter the shape and speed of the front but also change the relative stability of the
two stable steady states, reversing in some cases the direction of propagation of the front with regard to the
pure reaction-diffusion situation. A detailed parametric study discusses the properties of the asymptotic dy-
namics as a function of the Marangoni number M and of a kinetic parameter d.
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I. INTRODUCTION

Bistability between two different steady states is a well-
known feature of autocatalytic systems. In spatially extended
geometries, fronts connecting the two stable steady states can
travel with constant shape and speed due to the coupling
between reaction and diffusion. The direction and speed of
propagation depend on the relative stability of the two stable
steady states �1�.

Numerous studies have analyzed to what extent advection
can influence the dynamics of oscillatory �2–5�, excitable
�4,6�, or bistable reactions �7–9�, patterns in reaction-
diffusion systems �10,11�, and the propagation of combustion
fronts in gases �12–16� and of autocatalytic reaction fronts in
aqueous solutions �17–23�. Several studies have also ana-
lyzed to what extent advection can influence the propagation
of traveling bistable wave fronts �see, for instance, �23� and
references therein�. The main physical effect of the various
flows considered �shear, cellular, or percolating flows, time-
periodic, turbulent, or chaotic velocity fields� on frontlike
solutions is the speedup of the front propagation, with a de-
pendence of the propagation speed on the fluid flow intensity.
In these cases, the advection terms result from the presence
of an imposed external flow advecting the chemicals, which
are thus passive scalars.

However, chemical reactions are also prone to be the mo-
tor of convective motions due to density or surface-tension
gradients built up across traveling reaction-diffusion fronts.
The resulting spatiotemporal dynamics are then the results of
a subtle coupling between reactive, diffusive, and convective
processes.

Convection corresponding to either buoyancy- �24–28� or
surface-tension- �28–32� driven flows across a chemical
front has been shown to affect the properties of such fronts in
monostable systems. For such monostable fronts, the stable
steady state of the kinetics invades the unstable one, impos-
ing a unique given direction of propagation. The presence of

convection around the front can speed up the front velocity
but not change its direction of propagation. For bistable sys-
tems, it has been shown that the bistable character of the
kinetics can drastically change the nonlinear dynamics of a
buoyancy-induced Rayleigh-Taylor instability �33�. Discon-
nection of droplets of one stable steady state into the other
stable state has been observed numerically, a feature absent
in the case of a monostable kinetics �27�. The interaction
between surface-tension-driven flows �so-called Marangoni
flows� and bistable kinetics has, on the other hand, also been
the subject of several theoretical works. Using lubrication
theory, Dagan and Pismen �34�, as well as Dagan and Mal-
darelli �35�, have studied the coupling between Marangoni-
driven flows and a bistable chemical reaction occurring at the
surface of a thin film, using a one-variable cubic chemical
model. Their analyses have shown that a localized chemical
wave accompanied by a free surface hydrodynamic flow can
develop when insoluble surfactants are subjected to a
bistable chemical reaction which maintains two different
steady concentration states on the far ends of the film.
Bistable chemical reactions occurring only at the surface and
involving a single reactant supplied from the bulk have also
been studied by Pismen �36�, showing the role of Marangoni
convection in the stabilization of unstable inhomogeneous
states. Pereira et al. �37� have further shown using lubrica-
tion approximation and a two-variable chemical model that
such a coupling can lead to complex dynamics. A limiting
assumption of these theories is due to the fact that lubrication
equations are valid only if the thickness of the solution layer
is much smaller than the characteristic reaction-diffusion
length. The presence of sharp concentration gradients across
the chemical front thus imposes a limit of validity of lubri-
cation theory, which is restricted to solution films of thick-
ness much smaller than the width of the front. For any solu-
tion thickness of the order of the front width, this theoretical
approach fails, and one needs to resort to full numerical
simulations of the relevant nonlinear model.

Using matched asymptotic expansions to resolve the
problem of such sharp interfaces, Pismen �38� has shown
that a surface bistable reaction involving insoluble surfac-
tants coupled to Marangoni flows can lead to localized inter-
facial structures in deeper layers. The Marangoni flows are in
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this case counteracting the spread of the kinetically more
stable state with a higher surface tension. This theoretical
approach of the coupling between Marangoni flows and
bistable reactions remains, however, restricted to surface re-
actions. Indeed, as the surfactants are considered as in-
soluble, the analysis cannot take into account the influence of
diffusion of the chemical species in the bulk and hence the
important role that transport of the species from the bulk
toward the surface can have in the nonlinear dynamics.
Moreover, the Marangoni flow induced at the interface will
always, by continuity, give rise to a bulk flow, which can
interact with the chemical reaction front in a different way in
the bulk of the system than at the surface. It is therefore of
interest to understand the role played by such bulk motions
of the fluid in the existence of localized structures predicted
by Pismen �38�.

In this context, the objective of the present paper is to
analyze asymptotic dynamics resulting from the coupling be-
tween bistable kinetics occurring in the bulk of a two-
dimensional layer of fluid and Marangoni-driven flows.
Our goal is to understand to what extent internal chemically
driven flows arising from gradients of surface tension across
the bistable chemical front affect the spatiotemporal dynam-
ics of the system. To do so, we numerically integrate
the incompressible Navier-Stokes equations in a two-
dimensional system and couple via a Marangoni boundary
condition the flow evolution to that of a surface-active
chemical species present in the bulk and subject to a bistable
kinetics. We show that a bistable propagating front can be
deformed both at the surface and in the bulk due to convec-
tive flows. Furthermore, the front can be stopped and can
even see its direction of propagation reversed because of the
competition with these Marangoni effects. An inhomoge-
neous stationary state can then be achieved within a finite
parametric domain and the relative stability of the two kineti-
cally stable steady states can be drastically affected.

In this context, the paper is organized as follows. In Sec.
II, we summarize the model system and discuss the corre-
sponding dimensionless equations describing the dynamics.
The relevant dimensionless parameters of the problem, i.e., a
solutal Marangoni number M and a kinetic parameter d, are
introduced. In Sec. III, we describe the nonlinear dynamics
of the system and discuss the important properties of the
front evolution in the �M ,d� parameter plane. Eventually,
conclusions are drawn in Sec. IV.

II. MODEL SYSTEM

Our model closely follows the one we developed previ-
ously to analyze Marangoni effects on traveling monostable
fronts �31,32�. Indeed we consider a two-dimensional �2D�
thin aqueous solution layer of dimensionless length Lx and
height Lz in which an isothermal planar chemical front pro-
ducing a surface-active product of concentration c propa-
gates along the x direction. The surface tension of the solu-
tion depends on c but the surface is assumed to be
nondeformable and there is no evaporation so that we do not
address the dynamics in the air layer. The solution density
and viscosity are taken constant in space and time. Dimen-

sionless units constructed upon the characteristic reaction-
diffusion scales are used, i.e., for time, �c=1 /ka0

2, for length,
Lc=�D�c, for velocity, Uc=�D /�c, for pressure, pc=� /�c,
and for concentration, a0, with k the rate constant of the
autocatalytic reaction, a0 the initial reactant concentration, D
the molecular diffusion coefficient of the product, and � the
fluid viscosity. The dimensionless evolution equations for the
2D flow field v� = �u ,w� and the concentration c read

�c

�t
+ v� · �� c = �2c + c�1 − c��c − d� , �1�

�v�
�t

+ v� · �� v� = Sc · �− �� p + �2v� � , �2�

div v� = 0 �3�

with 0�d�1 being a kinetic parameter and Sc=� /D the
Schmidt number of the problem, where �=� /�0 is the kine-
matic viscosity and �0 is the density of the solution. The
rectangular system has rigid sidewalls at x=0 and Lx, a rigid
bottom at z=0, and a free upper surface at z=Lz. At each
boundary of this domain we require zero-flux boundary con-
ditions for the chemical concentration c. The hydrodynamic
boundary conditions at the rigid boundaries are no-slip con-
ditions u=0 and w=0. At the free surface �z=Lz�, we require
w=0 and use a Marangoni boundary condition for the hori-
zontal fluid velocity u to include the changes in surface ten-
sion induced by the concentration gradient of the surface-
active product across the front, i.e.,

�u

�z
= − M

�c

�x
. �4�

This condition �4� introduces the dimensionless solutal Ma-
rangoni number M defined as

M =
− 1

��Dk

d�

dc
, �5�

which is positive �negative� if the surface-active product de-
creases �increases� the surface tension �. As the characteris-
tic scales of the nondimensionalization are here the typical
scales of the reaction-diffusion �RD� system, the Marangoni
number is inversely proportional to the square root of the
kinetic constant k of the chemical reaction. This number M
quantifies the coupling strength between the hydrodynamic
motions and the RD processes. The two key parameters of
the problem are here M and d.

The initial condition corresponds to a planar RD front
propagating in a solution in the absence of any fluid flow.
The initial fluid velocity and the hydrostatic pressure gradi-
ent are thus set to zero everywhere in the system. The initial
condition for the surface-active product concentration is the
convectionless RD profile, solution of the RD problem

�c

�t
= �2c + c�1 − c��c − d� . �6�

The advantage of the simple bistable kinetics c�1−c��c−d� is
to allow us to obtain an analytical expression of the RD front
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connecting the two stable steady states �SSSs� c=0 and 1.
We choose here to start with the steady states c=1 and 0 to
be located, respectively, to the left and to the right of the
initial location of the front, i.e., we impose that the solution
satisfies c=1 when x→−� and c=0 for x→ +�. Explicitly,
the front solution reads then

c�x,t� =
1

1 + e�x−vt�/�2
=

1

2
�1 + tanh�−

�2

4
�x − vt��	 , �7�

where v=
�2
2 �1−2d� is the constant RD speed of the front �1�.

Solution �7� provides an analytical expression to be recov-
ered in the limit M→0 allowing us thus to test convergence
results �34� for small values of M. The relative stability of
the two SSSs depends on d. When d�0.5, c=1 is the most
stable steady state invading c=0, the reverse being observed
for d	0.5. For the unique value d=0.5, the two SSSs are
equistable and the front has no RD propagation speed, i.e.,
v=0. The front remains then at its initial position. From Eq.
�7�, it is seen that the width wRD of this front, arbitrarily
defined as the distance between c=0.99 and 0.01, equals
wRD=2�2 ln 99=13.

The goal of this paper is to analyze to what extent
Marangoni-driven flows will affect the relative stability of
the two SSSs as a function of both parameters M and d. To
do so, we numerically integrate Eqs. �1�–�3� by finite-
difference methods �31�. We use a semi-implicit projection
method to solve Eqs. �2� and �3�. The code has been vali-
dated through comparison with known analytical results
�31�. In addition to the tests described in our previous study,
we numerically reproduce the planar RD front �7� with the
correct width and speed v for different values of d when the
Marangoni number M is equal to zero.

III. 2D MARANGONI FLOW AROUND BISTABLE
CHEMICAL FRONTS: NONLINEAR DYNAMICS

Our model includes five dimensionless parameters: one
kinetic parameter d, two hydrodynamic parameters, i.e., the
Marangoni number M and the Schmidt number Sc, and two
geometric parameters, which are the length Lx and height Lz
of the system. The length Lx does not influence the results as
long as it is taken sufficiently long for the front not to inter-
act with a lateral boundary on the time of interest. Typical
Schmidt numbers for aqueous solutions run between 500 and
1500 �31�, a range in which the numerical results are quan-
titatively the same, which means that we effectively analyze
a Stokes flow. We fix here Sc=1500. We consider a quite thin
layer of 1 mm in thickness, which is more or less the width
of an autocatalytic chemical front �39�. In dimensionless
variables, we take then Lz=10 since the dimensionless width
of the RD front wRD
13. The Marangoni number, quantify-
ing the coupling between hydrodynamics and RD processes,
and d, determining the relative stability of the two SSSs, are
the two key parameters of our model and will be varied
throughout the remainder of this article.

The initial condition corresponds to a planar reaction-
diffusion front propagating at the constant RD speed v in the
solution where there is initially no fluid flow. When M =0, no

hydrodynamic motion appears in the solution and the planar
front propagates without any deformation at its constant
propagation speed v. When the Marangoni number differs
from zero, convection is initiated at the surface due to the
surface tension gradient across the front. This surface flow is
directed toward the region of larger surface tension. Follow-
ing this initial acceleration at the surface, a bulk flow is
induced in the opposite direction because the fluid is incom-
pressible and flows in a bounded system. Let us recall that, in
our choice of initial condition, c=1 is at the left side of the
system while c=0 is at its right. For positive M, the concen-
tration of the product c decreases the surface tension and
leads therefore to a positive fluid velocity at the surface,
directed to the right toward the region of c=0. Conversely,
for negative M, we get a negative surface flow directed to the
left.

A. Equistable steady states

Let us first consider the situation where the two SSSs c
=0 and 1 are equistable, i.e., when d=0.5. In the absence of
any flow, the RD propagation speed v of the front connecting
the two SSSs is therefore equal to zero. The base state is thus
an immobile RD front for M =0. As soon as Marangoni ef-
fects are switched on, convection sets in, deforming the
front, which starts to move entrained by the convective
flows. Figure 1 shows two-dimensional density plots of the
concentration ranging from c=0 �white� to 1 �black� for in-
creasing time, with d=0.5 and a positive Marangoni number
M =500. The front is observed to move globally to the left
even if the acceleration at the surface is to the right. The
effect of Marangoni convection on this initially immobile
RD front results in a deformation of the planar front as for
the monostable kinetics �31� but what is particular here is the
direction of motion of the front. Even if the two steady states
are kinetically equistable, the front propagates to the left as if
the Marangoni convection modified the relative stability of
the two steady states and made the one with the largest sur-
face tension �c=0� more stable. Several convection rolls de-

FIG. 1. Propagation of a chemical front separating two equi-
stable steady states �d=0.5� in the presence of chemically induced
Marangoni convection for M =500, shown from top to bottom from
t=0 up to 80 with a time interval of 
t=5. The aspect ratio between
Lx=400 and Lz=10 is preserved.
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velop across the layer, leading to oscillations of the concen-
tration field. After around 50�c, the system has reached an
asymptotic regime in which the front propagates at a con-
stant speed V and the oscillating front shape and fluid veloc-
ity field remain invariant in the comoving frame traveling at
speed V. The steady traveling flow field is localized in the
region of the deformed front and can be visualized in Fig.
2�a�. Figure 2�b� shows the asymptotic fluid flow and con-
centration field for M =−500. We can see that the dynamics
at negative M can be obtained by symmetry from the situa-
tion with corresponding positive M of the same magnitude
according to the transformation c�xin+x�→1−c�xin−x�,
u�xin+x�→−u�xin−x�, and w�xin+x�→w�xin−x�, where xin is
the initial position of the front.

B. Influence of the Marangoni number

In order to quantify the effect of Marangoni convection on
the front propagation, we next characterize the deformation
of the front, the constant propagation speed V, and the maxi-
mum horizontal fluid velocity umax as functions of M in the
asymptotic regime. The deformation of the front can be
quantified by a mixing length defined as the distance be-
tween �c�x , t��=0.01 and �c�x , t��=0.99, i.e., between the tip
and the rear of the transversed averaged profile,

�c�x,t�� =
1

Lz



0

Lz

c�x,z,t�dz . �8�

For each value of the Marangoni number scanned here
�−500�M �500�, the dynamics of the system always
reaches an asymptotic regime but the time needed to achieve
it increases with �M�. On short times, the mixing length in-
creases �31�, indicating an initial rise of the front deforma-
tion during which convection sets in. The mixing length next
saturates in the asymptotic regime to a constant value W
plotted as a function of M in Fig. 3�a�. It is seen that W is
symmetric between negative and positive M and increases
with �M�, i.e., with the intensity of the surface tension gradi-
ent across the front. For M =0, we recover W=13, i.e., the
width of the RD front. Figure 3�b� represents the constant
propagation speed V of the asymptotic localized structure,
obtained by measuring the slope of the position of the tip of
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FIG. 2. Focus on the asymptotic multicellular
fluid flow traveling with the deformed front for
d=0.5, M = �a� 500 and �b� −500. The two
structures shown at t=100 are symmetric with re-
gard to the initial position of the front located at
xin=250. The z direction has been magnified in
order to see the details of the velocity field.

0

25

50

75

100

125

W

(a)

-2

-1

0

1

2

V

(b)

-400 -200 0 200 400

M

-20

-10

0

10

20

u
m
a
x

(c)

FIG. 3. Asymptotic mixing length W �a�, propagation speed V
�b�, and maximum horizontal fluid velocity umax �c� as a function of
the Marangoni number for d=0.5.
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the front as a function of time. For positive M, the flow at the
surface is toward the right but nevertheless the bulk return
flow globally entrains the deformed front to the left and
hence V is negative. The reverse is true for negative M.
Figure 3�c� shows the horizontal fluid velocity u of maxi-
mum intensity umax as a function of M. This value is always
located at the surface and is therefore positive for M 	0
even if globally V�0. In Fig. 2�a�, for example, umax is
located at x=135, z=10. We note that both �V� and �umax�
increase with �M�, their respective values for M 	0 and M
�0 being antisymmetric with regard to M =0, where the RD
speed v �here equal to zero for d=0.5� is recovered. For
�M�=500, the flow is characterized by the presence of several
vortices inside the front as seen in Fig. 2. The number of
vortices increases with M. This can be compared to the hy-
drothermal waves obtained in the case of thermocapillary
convection in a planar liquid layer with a horizontal tempera-
ture gradient �40,41�. When the Marangoni number is in-
creased above the instability threshold in that system, the
basic return flow loses its stability and the motion becomes
oscillatory with a multicellular flow. The hydrothermal
waves propagate toward the hot wall of the layer, i.e., toward
the region of lower surface tension as in our case. We also
observe here a multicellular flow above a certain critical Ma-
rangoni number but the main different feature is the fact that
the multicellular flow is here localized in space and propa-
gates at a constant speed but does not oscillate in time. This
is due to the fact that the surface tension gradient is localized
here across the chemical front �see Fig. 2�. A more detailed
discussion of these oscillations is presented in Sec. III D as a
function of M and d. Lastly, we have plotted in Fig. 4 verti-
cal profiles of the horizontal fluid velocity u at the horizontal
location xmax where u is maximum for the various positive
M. Those profiles show that u�xmax,z� has all the properties
of a return flow �40–42�, getting its minimum and maximum
values at, respectively, z=Lz /3 and Lz for each M, and being
equal to zero at z=2Lz /3.

Since the convection affects the relative stability of the
two steady states when they are equistable, we have next
modified the value of d between 0 and 1 to see how Ma-

rangoni convection affects the relative stability of the two
SSSs in general.

C. Influence of the kinetic parameter d

For each pair of �M,d� values we have considered, the
coupling between a bistable chemical front and chemically
induced Marangoni convection gives rise after a transient to
an asymptotic steady dynamics characterized by a deformed
front propagating at a constant speed V and surrounded by a
localized steady fluid flow. The system presents a symmetry
between positive and negative M according to the following
transformation: M→−M, d→1−d, c�xin+x�→1−c�xin−x�,
u�xin+x�→−u�xin−x�, w�xin+x�→w�xin−x� and the
asymptotic properties W→W, V→−V, and umax→−umax.

Let us first consider the influence of d on the system dy-
namics at a constant M. Figure 5 compares the asymptotic
propagation speed V at M = �500 to the RD speed v for
various values of d. In the absence of flow �M =0�, let us
recall that the RD speed v=

�2
2 �1−2d� is positive �negative�

for d�0.5 �d	0.5�, meaning that the front travels then to
the right �left�. Three key regions can be identified in Fig. 5
when Marangoni effects are at play: regions I, IIa, and IIb,
the rest of the figure being symmetric with regard to d=0.5.
The most striking feature is in region I �0.392�d�0.5 for
M =500�, where the stability of the two steady states is in-
verted by Marangoni convection for positive M. Indeed, as
d�0.5, c=1 is the most stable steady state of the chemical
kinetics and the propagation speed of the front should be
positive, with c=1 invading c=0. However, as we have seen
in the previous section with equistable steady states, the Ma-
rangoni effect tends to confer a negative propagation speed V
on the front for positive M. The stability inversion in region
I is therefore the result of the competition between those two
antagonistic trends with the Marangoni effect winning over
the RD trend. However, as d decreases at fixed M, the chemi-
cal driving force grows as the kinetic stability difference be-
tween the two steady states increases. Eventually, there is a
value of d �here d
0.392� for which the propagation of the
front is stopped.

In regions IIa and IIb, the competition between the chemi-
cal and the Marangoni convective driving forces is in favor
of the chemical force, since the propagation speed V is posi-
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FIG. 4. Asymptotic profiles of the horizontal fluid velocity u
across the layer at xmax=xu=umax

for d=0.5 and increasing positive
Marangoni numbers between 20 and 500 with an interval of 80
between two successive curves. The dot-dashed curve corresponds
to M =0 when there is no convection.
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tive again just like the RD speed v. Nevertheless, we can still
differentiate between the two regions. In region IIa �0.303
�d�0.392�, the propagation speed for positive M is smaller
than for negative M. Since a Marangoni flow with negative
M tends to confer a positive propagation speed on the front,
it reinforces the chemical driving force, which explains the
behavior in region IIa. Let us note some characteristics of the
positive M curve in this region. For 0.385�d�0.392, Ma-
rangoni convection slows down the front propagation com-
pared to the reaction-diffusion speed, which is rather rare,
since convection-enhanced mass transport usually increases
the front propagation speed. At d=0.385, Marangoni convec-
tion does not affect the propagation speed at all �V=v�, while
at d=0.303, the propagation speed does not depend on the
direction of the surface tension gradient, as the speed V is the
same for both M =500 and M =−500.

Finally, let us consider region IIb, where the propagation
speed for positive M is now larger than for negative M.
Another mechanism has to come into play to explain here the
results between positive and negative M. The results for the
monostable kinetics obtained in our previous study �31� are
situated in this region since they correspond to d=0. When
M 	0, the flow at the surface is in the same direction as the
front propagation, so that we expect the reaction-diffusion-
convection propagation speed V and the mixing length W to
be larger than for negative M, due to a cooperative phenom-
enon at the surface where the fluid flow is initiated. On the
other hand, if the front is more deformed, the surface tension
gradient is weaker, and hence the intensity of umax is smaller
than for negative M. These are the results we observed for
the monostable kinetics and which are coherent with the ones
observed in region IIb. In Figs. 6�a� and 6�b� we observe that
the asymptotic mixing length W and the maximum intensity
of the horizontal velocity �umax� follow this explanation in
regions I, IIa, and IIb, while it is only true in region IIb for
the propagation speed.

The horizontal velocity profiles across the layer,
u�xmax,z�, have approximately the same return flow structure
for each value of d and M �see Fig. 6�c� with M =500 for
example�. Figure 7 shows the three properties characterizing
the asymptotic dynamics as a function of d for M =100, 300,
and 500. The detailed explanation given above for the propa-
gation speed behavior at M =500 is valid for each M we have
studied as seen in Fig. 7�b�. However, the value of d for
which V=0 is logically shifted toward d=0.5 as M decreases
since the opposing Marangoni effect is then weakening. The
asymptotic mixing length W is a monotonically decreasing
function of d, while the maximum horizontal fluid velocity
umax presents a minimum. At every constant value of M, the
time needed to reach the asymptotic regime is a simple func-
tion of d presenting one maximum dmax. For values of d
around this maximum, the time needed to reach the steady
regime increases with M, while it is independent of M oth-
erwise. Let us note that dmax is very close to the value of d
for which umax is minimum and the propagation speed is
zero.

Figure 7�c� shows that the convection is minimum when
the propagation speed of the asymptotic structure is zero. At
this particular value of d, let us call it d0, the different effects
compensate exactly to stop the front, so that we expect the

surface tension gradient to have the smallest effect on the
system and hence the smallest umax. On each side of d0, V
and umax increase, indicating that the Marangoni effect has a
stronger influence on the system when the stability difference
between the two steady states increases. On the other hand,
this observation is true for the mixing length only for d
�d0.

Figure 8 shows that the asymptotic mixing length W, the
intensity of the propagation speed V, and the maximum hori-
zontal fluid velocity umax all increase with M for each value
of d. Indeed, when M increases, the surface tension gradient
increases across the front, giving rise to more important Ma-
rangoni convection, and hence a more important deformation
of the front and propagation speed. This result concerning
the propagation speed of the front is similar to what was
observed in reaction-diffusion-advection systems where the
front is sped up by fluid advection and its propagation speed
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increases with the flow intensity �13–15,18–22�. There is,
however, a major difference in the fact that here chemistry is
not slaved to the flow. The nonlinear pattern results here
from a subtle interplay between reaction, diffusion, and
chemically driven convection processes. The maximum ve-
locity of the front is thus not imposed by the given flow field
properties but is set by the Marangoni number characterizing
the amplitude of the response of the flow to concentration
gradients.

D. Multicellular flow

An interesting property of the dynamics resulting from the
interaction between a bistable kinetics and chemically in-
duced Marangoni convection is the existence of a multicel-
lular flow traveling with the front and leading to spatial os-
cillations of the concentration field. This asymptotic structure
propagates at a constant speed and remains steady in the

comoving frame for certain values of d. Those oscillations of
the concentration and flow fields had already been observed
in our previous study with monostable kinetics for M 
220
but always in a transient way �31�. Here, on the other hand,
they are maintained in the asymptotic dynamics for d
0.5 at
large M �see Fig. 1�. The concentration oscillations are less
pronounced and the number of flow vortices decreases when
d increases from 0.5. On the other hand, for a fixed d, the
intensity and number of steady oscillations increase with M,
while they are difficult to observe at small M.

At the other limit, for d�0.3, the multicellular flow and
concentration oscillations are only transient �see Fig. 9 for
d=0.3, M =500�. For any fixed M, the number of vortices
increases at short times, but they disappear in favor of one
steady convection roll propagating with the deformed front
without oscillations, which corresponds to the asymptotic
structure we have characterized for the monostable kinetics
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�31�. At a constant d�0.3, the intensity of the transient os-
cillations increases with the Marangoni number, but they dis-
appear at roughly the same time �after �25−30��c for d
=0.3�. On the other hand, the transient oscillations disappear
later and are more pronounced when d increases in the range
0�d�0.3.

The transition between transient and steady oscillations is
not easy to determine but occurs in the range 0.3�d�0.5.
Indeed, for those values of d, strong oscillations in the con-
centration and flow field initially appear, but they almost
disappear after some time without completely resorbing. We
believe that the transition should appear around d0 where the
propagation speed is zero.

In conclusion, the concentration and velocity oscillations
are steady when the surface fluid flow is opposing the front
propagation, while they are transient when the flow induced
at the surface is parallel to the propagation direction. The
latter corresponds to the results obtained with the monostable
kinetics. However, it is important to notice that, in that case,
when the surface fluid flow is opposing the front propaga-
tion, a steady additional deformation of the front occurs,
which increases with �M�, but there is no steady oscillation as
for the bistable kinetics. Finally, the increase in intensity of
the oscillations when d gets closer to d0, for both the steady
and the transient dynamics, is probably due to the fact that
they can develop more if the front propagates more slowly.

IV. CONCLUSIONS

Bistable fronts connect in space two stable steady states
and travel at a constant reaction-diffusion speed v depending
on the relative stability of these two states. To get insight into
the question of how such fronts can be affected by surface-
tension driven flows, we have numerically integrated Navier-
Stokes equations on a 2D domain with a Marangoni bound-
ary condition at a free surface coupled to the evolution
equation of a surface-active product present in the bulk and
involved in a bistable kinetics. We have shown that
Marangoni-driven flows resulting from surface tension gra-
dients across such fronts have a profound influence on the
dynamics of these fronts. First of all, they lead to a spatial
deformation of the front due to the presence of convective
flows generated at the surface by the Marangoni acceleration
and extending in the bulk. These flows induce an increase of

the overall speed of the front, this speed being usually larger
in absolute value than the reaction-diffusion speed v inde-
pendently of the direction of the Marangoni flows at the
surface. Such results are similar to those that have been ob-
served in the case of monostable fronts �31,32�.

The bistable case presents, however, a strong difference
with the monostable case: Marangoni flows are able to
change the relative stability of the two bistable states. In the
case of monostable fronts, Marangoni effects can accelerate
traveling fronts with the clockwise or anticlockwise charac-
ter of the vortex depending on the sign of the Marangoni
number, but its direction of propagation always remaining
such that the stable steady state invades the unstable one. For
bistable systems, the Marangoni effects are on the contrary
much more striking: fronts deformed by Marangoni flows are
still able to travel more quickly than in the RD case, but
more strikingly they can also reverse their direction of propa-
gation when surface tension effects are added. A parametric
study of the properties of such convective fronts in the
�M ,d� parameter plane has identified regimes in which the
Marangoni effects can either maintain the preferred RD di-
rection of propagation or, on the contrary, reverse it. For one
specific value of d depending on M, the front can remain
stationary even when the RD speed is nonzero. The depen-
dence on d and M of the asymptotic propagation speed V and
mixing length W and of the maximum horizontal fluid veloc-
ity umax have also been discussed.

Our results confirm that the solitary structures due to the
competition between interfacial bistable reactions and Ma-
rangoni flow predicted by Pismen �38� also exist when the
chemical reaction takes place in the bulk of the solution
layer. This is not intuitive since, if the Marangoni flow is
opposing the RD front direction of propagation at the sur-
face, it means that in a large part of the bulk �two-thirds of
the layer; cf. Fig. 6�c� for instance� they are going in the
same direction. Consequently, the overall direction of the
reaction-diffusion-convection structure cannot be predicted
by considering the forces at the surface but is the result of a
much more complex interaction between RD processes and
Marangoni effects. We have characterized the dynamics of
deformation of the front in this bulk in details. The interest of
our results is furthermore to isolate peculiar limiting cases
which could be the starting point for more analytical insights
into nonlinear reaction-diffusion-convection dynamics. A
first limit is the one for d=1 /2. In that case, the reaction-
diffusion base state has a propagation speed equal to zero,
which should facilitate theoretical analytical expansions in
small M or analysis of the limit for large M to get insight
into the scaling properties of the reaction-diffusion-
convection asymptotic dynamics induced by Marangoni ef-
fects. Another limit of interest is the one for which the con-
vectively deformed front has now a zero speed as well,
resulting from an antagonistic combination of reaction-
diffusion dynamics traveling in one given direction and Ma-
rangoni flows that are pushing the front on average in the
other direction. In that case, the asymptotic dynamics is sta-
tionary in the laboratory reference frame, which should favor
development of analytical insights into nonlinear Marangoni-
driven localized reaction-diffusion-convection patterns.

FIG. 9. Propagation of a chemical front presenting transient os-
cillations that disappear after �25−30��c �d=0.3� due to chemically
induced Marangoni convection for M =500. The dynamics is shown
from top to bottom from t=0 to 50 with a time interval of 
t=5.
The aspect ratio between Lx=400 and Lz=10 is preserved.
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